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Radiating Levi-Civita metric 

J .  KRISHNA R A 0  
Department of Mathematics, King’s College, University of London, London 
WC2, England 
MS. received 12th March 1970, in recisedform 4th September 1970 

Abstract. A generalization of Levi-Civita’s static solution for the exterior 
gravitational field of a cylinder of infinite length and finite cross section, 
corresponding to the field equations Tab = qk,k, ,  kaka = 0, is discussed. 
The  expression for q is of the form j ‘ (u) , /p,  which shows the typical cylindrical 
fall-off over the null hypersurface U = constant. I t  is pointed out that the 
passage of an outgoing waye affects permanently the static Levi-Civita space- 
time and the energy for this class of solutions is a particular case of the C-energy 
defined by Thorne. The geodesic equations for a test particle moiring in the 
radial direction display a gravitational ‘induction field’ which is associated with 
a changing mass in the Kewtonian field and is directed towards the axis of the 
cylinder. In contrast with the spherically symmetric case the induction field 
always acts to decrease the energy of a test particle on which it acts. It is 
shown that the mass per unit length of the static cylinder strongly affects the 
shear and divergence of the null congruence. The asymptotic behaviour of 
the Weyl tensor is analysed and a peeling theorem proved for this case. 

1. Introduction to the metric 
I t  is convenient for the discussion of cylindrically symmetric space-times with 

one degree of freedom in general relativity to take as exterior line-element the form 
given by Einstein and Rosen (1937)’ namely, 

ds2 = exp(2(y - $))(dt2 - dp2) - exp(24) dz2 - p2 exp( - 2$) dq? (1)) 

where y and $ are functions of p and t only. The author (1964, 1970) has shown that 
starting from any empty space solution of the gravitational field equations for a 
cylindrically symmetric field given by (l) ,  it is always possible to construct a class of 
solutions to the non-empty space equations for a stress energy tensor 

T a b  = qkak, (2) 

where k, is the null propagation vector for ‘pure radiation’ (Stachell969). Explicitly, 
if ($, y )  is any pair of functions in (1) satisfying the empty space field equations, the 
general solution of the field equations (2) for the same metric is given by {#, y+f(u)} ,  
f being arbitrary and u = t - p .  Therefore, for any given empty space solution of 
the Einstein and Rosen metric one gets a class of solutions satisfying the pure radia- 
tion field equations (2) and q is of the formf’(u)/p. This shows the typical 1/p cylindri- 
cal fall-off over a null hypersurface U = constant and we identify p as the luminosity 
distance. 

Applying this result to Levi-Civita’s static solution and writing u as a coordinate, 
the metric field surrounding a radiating cylinder of infinite length and finite cross 
section is given by the metric 

ds2 = exp(2(f+ y - #)}(du2 + 2 du dp) - exp(2$) dz2 - p2 exp( - 2$) dp2 
17 

(3)) 
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with 
$J = - ( l -c ) lna-c( l -c ) - l lnp  
y = -(1-2c)lna+c2(1-c)-21np 

where a and c are constants. In  the earlier work by Levi-Civita (1919), Wilson (1920) 
and Marder (1958) it was argued that, for small c, the mass per unit length of the 
static cylinder is given by = c /Z  although as pointed out by Thorne (1965) this 
result is true only so long as the internal pressures of the cylinder are much smaller 
than its energy density. 

The only nonvanishing component of the Ricci tensor for the metric (3) is given 
by 

Roo = f ' / f .  (4) 
It will be shown in the next section that in order for the energy density of radiation 
to be positive, necessarilyf' < 0. 

2. The energy density 
In  this section we introduce a null tetrad with respect to which we later take the 

physical components of the Weyl tensor. We take k, as one of the real null vectors, 
ma as the other, and tu  as the complex null vector representing the two orthogonal 
space-like directions. The  relations among the tetrad vectors are given by 

kaka = mama = tata = taia = tama = kata = 0 
kama = tata = 1. 

Though the directions of the two real null vectors are uniquely fixed, an arbitrariness 
remains in their normalization. Following Stachel (1966) we give two choices: 

Orthonormal tetrad Null tetrads 

ea e*-?$ ka = ea + ea, &a = e*- Yka 

ea = e*-Ya: ma = $(ea-ea), ?;la = eY-*ma 

0 0 1  

1 0 1  

ea = (e*/p)S," 
3 

1 
tu = - (za + ;ea) 

3 d2 
1 

t a  = - (ea-iea). 
2/2 = 

We find the null tetrad (i", fia, tu, f a )  more convenient for the discussion of the field 
equations since in this case k, is the gradient of U. From the tetrad relations we notice 
that the only nonvanishing projection of equation (2) onto the null tetrad will be 

4 = Tabmanab = - ( 1/8n)Rabmamb = - (1 /&)f ' /p. 

Since q, being the energy density measured in this frame, must be positive, it follows 
thatf' < 0. 

By stipulating in (3) that (i), f (u )  = 0 for U < 0, and (ii), f ( u )  -+constant as 
U -+ CO, and following an argument exactly similar to the one given by Marder (19%) 
it can be shown that the passage of an outgoing wave produces a permanent change in 
Levi-Civita's exterior metric, and consequently in the source. Alternatively, it is 
easy to show thatf contributes to what Stachel(l966) calls the disposable gravitational 
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mass, the amount available for radiation. Also by analogy with gravitational news 
function he defines f ( u )  as the pure radiation news function. The  energy for this class 
of solutions is a particular case of the C-energy defined by Thorne (1965). 

The  effect of the static field on that of radiation can easily be seen from the optical 
scalars. Straightforward computation for the divergence and shear of the null con- 
gruence gives 

e = ka;a = exPI2(#-Y-f)l/P 

It is clear that the value of c strongly affects the shear (which vanishes only for 
c = - 1) and divergence. It will be shown in 0 4 that the presence of the static field 
makes many quantities fall off asymptotically more slowly than l /p ,  which is char- 
acteristic for a cylindrical radiation field. 

3. Geodesics 
We calculate the geodesics for the metric (3 )  in the plane z = constant. Since 4 

is a cyclic coordinate, the corresponding relative angular momentum per unit mass is 
always a constant and is given by 

The  relative energy per unit mass is given by 

a 9  
azi . 
- -  - exp{2( f + y - +)}(zi + p )  E K. 

I t  is to be noted that K is a constant only when f is. The  geodesic equations them- 
selves may be written: 

d l  
dS 
_ -  - 0  

(7) -=  dP f ’ U 2 -  c expM+ - Y -f I> + (2c - 1Y2 exp{V+ - Y -f>l 
ds (1 - CI2P (1 -C)P3 

The difference between these equations and those for Levi-Civita’s static case lie 
in terms containing f ’ ( U ) .  By analogy with the spherically symmetric solution 
discussed by Lindquist et al. (1965) the first term on the right-hand side of (7)  may 
be termed the ‘induction field’ associated with a changing mass in the Newtonian 
field (next term) and is directed towards the axis of the cylinder, sinceP(u) < 0. 
But in contrast to the spherically symmetric case it always acts to decrease the energy 
of the test particle on which it acts (equation (6)). Of course, this is not surprising 
and is to be expected from the Kewtonian analogue. The  last term in (7)  represents 
the centrifugal force. 
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4. Asymptotic form of the Weyl tensor 

the null tetrad (ka ,  ma, tu, f a )  are given by 
The only nonvanishing complex components of the Weyl tensor with respect to 

It may be noted that 2(#-y) has its maximum value when c = - 1 ; for this value 
exp(2#-2y) = p1;2. Therefore, exp(2#-2y) is always of order less than p1’2 except 
when c = - 1 (the shear-free case). Since the highest power occurring in the Weyl 
tensor is of order exp(2#-2y)/p, this means that the Weyl tensor always vanishes 
asymptotically. At any rate to order exp(2# - 2y)/p, only Y4 # 0 and the metric is of 
type N .  T o  order exp(2#- 2y)/p2, Yo ,  Y2 ,  Y4 all the three components do not vanish 
and the metric is of type I. 
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